Read and Highlight the notes below...

Continuous and Discrete Graphs

When the points on a graph are connected, and it makes sense to connect them, the graph is said to be continuous. If the graph is not continuous, and is just a sequence of separate points, the graph is called a discrete graph. For example, the graph below left represents the cost of buying x shirts, and it is discrete because you can only buy whole numbers of shirts. The graph farthest right represents the cost of buying x gallons of gasoline, and it is continuous because you can buy any (non-negative) amount of gasoline.

Read and Highlight the notes below...

Continuous and Discrete Graphs

When the points on a graph are connected, and it makes sense to connect them, the graph is said to be continuous. If the graph is not continuous, and is just a sequence of separate points, the graph is called a discrete graph. For example, the graph below left represents the cost of buying x shirts, and it is discrete because you can only buy whole numbers of shirts. The graph farthest right represents the cost of buying x gallons of gasoline, and it is continuous because you can buy any (non-negative) amount of gasoline.

Continuous Graph

Discrete Graph

Complete the problems/graphs below:

When in the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ graphs are drawn as continuous graphs.
Draw the graph of $y=3 x+5$ below.

When in the form $t(n)=m n+b$ graphs are sequences and drawn as discrete graphs (with just points). Draw the graph of $\mathrm{t}(\mathrm{n})=2 \mathrm{n}-3$ below.

