Laws of Exponents Notes
$\ln x^{3}$, the x is the base and 3 is the exponent.

$$
\begin{array}{l|c}
\begin{array}{l}
\text { Multiplying Exponents } w / \text { the same base } \\
5 x^{3} y^{2} \cdot 3 x^{2} y \\
5 \cdot x \cdot x \cdot x \cdot y \cdot y \cdot 3 \cdot x \cdot x \cdot y \\
15 x^{5} y^{3}
\end{array} & \begin{array}{c}
\text { Dividing Exponents } w / \text { the same base } \\
\mathbf{X}^{m} \cdot \mathbf{x}^{n}=\mathbf{x}^{m+n}
\end{array} \\
\begin{array}{c}
\frac{15 x^{3} y^{2}}{3 x y^{3}}=\frac{15 \cdot x \cdot x \cdot x \cdot y \cdot y}{3 \cdot x \cdot y \cdot y \cdot y}=\frac{5 x^{2}}{y} \\
\text { Your Example }
\end{array} & \begin{array}{c}
\mathbf{x}^{m} \\
\mathbf{x}^{n}
\end{array}=\mathbf{X}^{m-n} \\
\begin{array}{c}
\text { Your Example } \\
\text { (need 2 or more terms) }
\end{array}
\end{array}
$$

Your Example (need 2 or more terms)

Raising a Power to a Power

$$
\left(2 x^{2} y\right)^{3}=\left(2 x^{2} y\right)\left(2 x^{2} y\right)\left(2 x^{2} y\right)
$$

$$
=(2 \cdot 2 \cdot 2)\left(x^{2} \cdot x^{2} \cdot x^{2}\right)(y \cdot y \cdot y)
$$

$$
=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x \cdot x \cdot x \cdot x)(y \cdot y \cdot y)
$$

$$
=2^{3} \cdot x^{6} \cdot y^{3}
$$

$$
\left(x^{m}\right)^{n}=x^{m \cdot n}
$$

Your Example (need 2 or more terms)

$$
x^{0}=1
$$

$$
\frac{n^{1}}{n^{1}}=n^{1-1}=n^{0}=1
$$

Your Example

Negative Exponents

$$
\begin{array}{c|c}
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} & \frac{1}{2^{-5}}=2^{5} \\
x^{-n}=\frac{1}{x^{n}} & \frac{1}{b^{-n}}=b^{n}
\end{array}
$$

Your Example

Remember to EXPAND into factored form before simplifying.

