Solving Absolute Value Inequalities Notes

important information
Follow these steps to solve an equation with an absolute value algebraically...

1st- Isolate the absolute value on one side of the equation.

2nd- Determine the possible values of the number inside the absolute value. For example, if

$$
|2 x+3|=7,
$$

then $(2 x+3)$ must equal either 7 or -7 .
3rd- Set up new equations with BOTH possible values and solve both equations for the variable. Your solution is both of the solutions.

Example:

$$
\begin{gathered}
5|2 x+3|-6=29 \\
5|2 x+3|=35 \\
|2 x+3|=\frac{35}{5} \\
|2 x+3|=7
\end{gathered}
$$

$$
(2 x+3) \text { must equal } 7 \text { or }-7
$$

$$
|2 x+3|=7
$$

$$
\begin{array}{ccc}
2 x+3=7 & \text { or } & 2 x+3=-7 \\
2 x=4 & & 2 x=-10 \\
x=2 & & x=-5
\end{array}
$$

Things to Remember
NOTE: You can NOT distribute over the absolute value sign.
$-2|3+1| \neq|-2(3)+-2(1)|$
*Solve until you only have absolute value on one side THEN split your equation/inequality.
*When splitting your inequality, flip the inequality symbol on the one that is a negative.

SUPER IMPORTANT!!!- If you are solving an inequality and you multiply and/or divide by a negative number, you MUST flip the inequality sign the other direction.

Graph your solution on a number line below.

