Review for Math IA Chapter 2 Individual Test

1. Calculate the value of the following expression.

$$
\sqrt{96^{2}+247^{2}}-21
$$

2. Evaluate the expression if $x=-5 \quad y=10$ and $z=3$. a. $3 y\left(x+x^{2}-z\right)$

Evaluate the expression if $\quad x=-5 \quad y=10$ and $z=3$.
b. $x y+z$

Evaluate the expression if $\quad x=-5 \quad y=10$ and $z=3$.
c. c. $2\left(\frac{x+y+z}{3}\right)$
3. Simplify without negative exponents:
a. $\quad \frac{5 x^{7}}{20 x^{5}}$
b. $\left(a^{2} b^{5}\right)\left(a^{4} b^{3}\right)$
c. $\left(5 x^{5} y^{4}\right)^{3}$
d. $\quad 5\left(6 x^{5}\right)^{0}$
e. 3^{-5}
4. Write the equation of the line representing each situation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b})$? (4 pts)
a.

Equation:
b.

\boldsymbol{x}	-3	-2	-1	0	1	2
\boldsymbol{y}	14	15	14	11	6	-1

Equation:
5. Read the information below about Lines A and B. If there is enough information to write only one linear equation for the situation, then write the equation (in $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ form). If there is not enough information to write only one linear equation, tell what additional information is needed.
a. Line A passes through the point $(5,2)$.

If there is enough information to write only one linear equation for the situation, then write the equation (in $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ form). If there is not enough information to write only one linear equation, tell what additional information is needed.
b. Line B has a slope of 10 and a y-intercept of -17 .
6. Graph the equation $y=-\frac{2}{3} x+8$ on graph paper.

7. What is the slope and the y-intercept of this equation... $y=-\frac{7}{9} x+3$?
a. What is the slope?
b. What is the y-intercept?
8. Solve for x .
a. $6 x-2=40$
b. $8(x-2)=-12+x+17$
9. Calculate the slope of the line that goes through the points $(-3,7)$ and $(12,-8)$.
10. Write the equation of the line that has a slope of 4 and passes through $(-3,-10)$.
11. Write an equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) for each graph below.
a.

Equation:

Equation:

